橡膠支座作為現代建筑結構中的重要連接部件,以其獨特的力學性能和工程適用性,在建筑隔震領域發揮著關鍵作用。與傳統的鋼支座、混凝土支座相比,橡膠支座具有構造簡單、性能可靠、經濟實用、施工便捷等顯著優勢,現已成為建筑工程中應用最為廣泛的支座形式。
以常見的疊層橡膠支座為例,它由多層天然橡膠與鋼板交替硫化而成,如同精心打造的 “千層餅” 結構。在三向約束狀態下,其抗壓彈性模量可達 500MPa(約 5104KG/CM2),這一數值相較于普通橡膠支座在豎向承載能力上有了質的飛躍,提升幅度高達 20 倍。這種卓越的承載能力不僅保證了建筑在日常使用中的穩定支撐,更在地震發生時,通過水平方向的剪切變形,將地震產生的震動能量高效吸收并耗散。當強烈地震波來襲,疊層橡膠支座就像一位靈活的舞者,通過自身的柔性變形巧妙化解地震的沖擊力,實現了 “隔離震動而非硬抗” 的理想效果,讓建筑在地震中得以安然無恙。
力臂式減震工法:利用設有減震器的肘結力臂機構放大結構層間變形,提高耗能效率,顯著減少地震反應,是日本近年出現的新型抗震技術。
解如下:建筑支座是橋跨結構的支撐部分,其設置在梁板式體系中主梁與墩臺之間,作用是將橋跨結構的荷載反力傳遞到墩臺上,并將集中反力擴散到一個足夠大的面積上,以保證墩臺工作的安全可靠;是保證橋跨結構在荷載、溫度變化、混凝土收縮和徐變等因素作用下能自由地變形(水平位移及轉角),使結構實際受力時情況與結構的受力模型相符;是保證橋跨結構在墩臺上的位置充分固定,使其不至滑落。
非加勁支座(僅一層橡膠構成,無鋼板加勁)的特性與適用范圍:優勢:水平位移能力強(剪切應變可達 400%),適應小荷載結構的水平變形需求;局限:豎向壓縮變形大(豎向剛度僅為加勁支座的 1/10~1/5),橡膠側向膨脹明顯(四周凸突高度>橡膠厚度的 30%),易因拉伸變形導致應力老化,僅適用于荷載≤50kN、跨度≤6m 的小型結構(如人行天橋、小型蓋板涵)。
工作原理:其核心機理是利用橡膠的不均勻彈性壓縮來適應梁體的豎向轉動,同時依靠橡膠塊的剪切變形來實現梁體的水平位移,有效釋放結構內力。
通過宿遷寶龍城市廣場2#地塊商業街1#2#樓辦公樓橡膠隔震施工,基本解決了隔震橡膠支座施工預埋板質量安裝及混柱帽混凝土澆筑密實度,且對在隔震工程的管理水平和技術水平有了很大的提高,同時對全面質量管理有了更深刻的認識,為以后在隔震建筑施工方面取得了寶貴的經驗,取得了較好的社會和經濟效益。
FPS建筑摩擦擺支座的設計和安裝需要專業的工程師進行,并且需要遵循相關的建筑標準和規定。

支座參數對工程性能的影響:以高架橋為例,板式橡膠支座水平剛度的差異會影響結構功率流。當水平剛度分別取 1.705×10?KN/M、2.273×10?KN/M、2.728×10?KN/M 等數值時,與采用普通活動支座的工況相比,結構動力響應呈現顯著差異,需結合工程需求合理選取支座參數。
圓形球冠橡膠支座專為異形結構設計,分為兩類:球冠圓板式支座:通過橡膠球冠調整受力方向,適應坡梁、曲梁的轉角需求,豎向剛度穩定;聚四氟乙烯球冠圓板式支座:在球冠表面粘覆 PTFE 板,兼具轉角與水平滑移功能,適用于大位移 + 大轉角的復雜場景(如互通式立交橋)。
豎向剛度:支座在豎向荷載下,內部鋼板約束橡膠的側向膨脹,從而顯著提高其豎向剛度。
建筑橡膠支座作為建筑工程中關鍵的配套構件,在荷載、溫度變化、混凝土收縮及徐變等多重作用下,能夠靈活適應建筑上部結構的轉角與位移需求,確保上部結構可自由變形而不產生額外附加內力,有效保障建筑結構的穩定性與安全性。隨著地震災害的頻繁發生,人們對建筑物抗震設防意識日益提高,基礎隔震設計已成為設計單位與業主方重點關注的環節,而橡膠支座正是實現這一設計目標的核心產品之一。
所有建筑固定橡膠支座在設計施工時應遵循以下布置原則:其一,在橋跨結構方面,應使梁的下緣在制動力的作用下受壓,布置在行車方向前方;其二,在橋墩方面,應使制動力的方向指向橋墩中心,使墩頂圬工在制動力的作用下受壓不受拉;其三,在橋臺方面,應使制動力的方向指向堤岸,使墩臺頂圬工受壓,并能平衡一部分臺后土壓力。
剪力墻結構:因剪力墻在大震作用下可能出現拉應力,其下部應布置橡膠支座,隔震層大變形由橡膠隔震支座主導控制;
地震時,上部結構置于柔性隔震層上,只做緩慢的水平運動,從而“隔離”從地面傳到上部結構的震動,大幅降低上部結構反應。大地震時結構如同處于“安全島”上,能有效保護建筑和室內物品不受損壞。這種把傳統“硬抗”方式改為“以柔克剛”的減震技術,是中華文化“以柔克剛”哲學思想在抗震減災技術上的成功運用。我們的祖先早就成功地將隔震技術運用在遍布全國的宮殿、寺廟、樓塔等建筑中,使它們在歷次大地震中得以保存下來。現代隔震技術是誕生于20世紀80年代的一項新技術,主要應用于復雜或大跨建筑、建筑、學校、醫院、住宅、重要設備和歷史文物等,有些隔震工程已經成功經受了地震的考驗。我國座隔震建筑于1980年建成。1993年建成的我國棟8層鋼筋混凝土框架橡膠支座隔震房屋,位于廣東汕頭,經受了1994年臺灣海峽3級地震的考驗。
由于D、F型建筑伸縮縫整條采用氯丁或三元乙丙橡膠制作,具有良好的耐老化、耐曲撓性能。由于FAX、FAY、FBX三個力匯交于A點,對A點寫取矩方程可求出待求力FBY。由于板式橡膠支座具有水平剪切的各向同性,能良好傳遞上部構造多的變形。由于板式支座本身具有足夠的豎向剛度,可以滿足較大垂直荷載,并具有良好的彈性以適應梁端的轉動。由于從受力5-2A上能夠求出FBY,所以可以從受力5-2C中求出FBX。由于各省之間情況各異,經濟增長點各不相同,車輛荷載出入較大。由于化學注漿材料具有良好的與混凝土粘接性能,待其形成固體后具有良好的彈性和遇水膨脹性。由于檢測設備投資大,檢測難度大,一般單位無能力承擔。

耐寒型支座:適用于-40℃至+60℃的更嚴苛低溫環境,通常在型號中以特定代號標識。
球冠圓板式橡膠支座:在普通板式支座基礎上增設球冠襯板,能更好地適應梁端的轉動,改善受力狀況,使支座在平面上各向同性,有效調節支撐受力狀態。
施工全過程及完成后,必須對橡膠隔震支座實施嚴格的成品保護措施,包括防水、防油、防污染、防碰撞、防火以及防人為損壞。
解如下:建筑支座是橋跨結構的支撐部分,其設置在梁板式體系中主梁與墩臺之間,作用是將橋跨結構的荷載反力傳遞到墩臺上,并將集中反力擴散到一個足夠大的面積上,以保證墩臺工作的安全可靠;是保證橋跨結構在荷載、溫度變化、混凝土收縮和徐變等因素作用下能自由地變形(水平位移及轉角),使結構實際受力時情況與結構的受力模型相符;是保證橋跨結構在墩臺上的位置充分固定,使其不至滑落。
簡單結構隔震體系的基本特性和減震機理簡易支座僅適于跨度10M以下的公路橋和4M以下的鐵路板橋。簡支端擬采用GYZ300×54支座,連續端擬采用GYZ300×52支座。簡支梁橋,按其靜力式應在其一端設置裝備裝置固定支座,另一端設置裝備裝置活動支座。簡支梁橋使用的橡膠支座簡介對于簡支梁橋,根據橋寬和跨度,此類結構可以有各種型式橡膠支座。簡支梁橋一端沒固定支座,另一端設活動支座。建立隔震與非隔震結構的計算模型,然后輸入三條地震波(兩條天然波和一條人工波)進行分析。建設單位提出的與結構有關的符合有關標準、法規的書面要求;建議偏多思路,短線操作,支撐有22800上移至23500一線。
曲率半徑:曲率半徑過大可能導致橋板大幅度晃動,增加落梁的概率;曲率半徑過小則會使減震球擺的晃動太小,不利于消耗地震能量。在高速鐵路橋梁摩擦擺支座隔震設計中,應當考慮曲率半徑對梁體位移、支座殘余位移和橋墩內力的影響,再因地制宜選擇合適的曲率半徑。
曲率半徑:曲率半徑過大可能導致橋板大幅度晃動,增加落梁的概率;曲率半徑過小則會使減震球擺的晃動太小,不利于消耗地震能量。在高速鐵路橋梁摩擦擺支座隔震設計中,應當考慮曲率半徑對梁體位移、支座殘余位移和橋墩內力的影響,再因地制宜選擇合適的曲率半徑。
隔震系統的位移能力不足。依據AASHTO標準驗算可得,該高架橋隔震系統的大位移為820MM。而原設計的隔震系統的極限位移僅有210MM(滑動支座)——480MM(屈服耗能裝置的極限位移)。通過利用博盧和達茲兩處地震觀測站分別對地震場地進行了地面運動情況的觀測,并模擬了近斷層的運動情況,得到的峰值位移應為1400MM。這巨大的差別說明了該設計不僅非常不合理(隔震的兩部分位移能力不同),也遠遠不能滿足達茲近場大地震的要求。

橡膠支座是設置在建筑上部結構與墩臺之間的關鍵構件,主要用于適應活載、溫度變化、混凝土收縮和徐變等因素引起的結構變形。常見的橡膠支座主要包括板式橡膠支座、盆式橡膠支座、鉛芯橡膠隔震支座(LRB)和四氟滑板橡膠支座等類型。其中,板式橡膠支座由多層橡膠片與加勁鋼板復合而成,鋼板完全包覆在橡膠彈性材料內部,具備良好的承載與變形能力。
四氟滑板式橡膠支座適用場景:主要作為活動支座使用,尤其適用于跨度大于30米的大跨度簡支梁橋、連續板橋以及多跨連續梁橋等需要較大位移補償的結構。
IS022762-1(部分:試驗方法》規定了減(隔)震橡膠支座性能的試驗方法以及其生產過程中所用的橡膠材料性能的測定,如壓縮和剪切性能、支座的耐久性能和所用材料的力學物理性能.IS022762-2(第二部分:建筑應用規范》規定了用于建筑的減(隔)震橡膠支座的要求和用來制造這種支座的橡膠材料所應滿足的具體要求。
基礎參數(補充完善):荷載等級:100kN-10000kN,覆蓋中小跨徑(≤30m)至大跨度(≤50m)結構;滑板規格:聚四氟乙烯板厚度 1.5mm-3mm(常用 2mm),表面粗糙度≤0.8μm,配套梁底不銹鋼板(厚度 2mm-3mm,鏡面拋光,Ra≤0.2μm);形狀系數:第一形狀系數 S?≥15,第二形狀系數 S?≥5,確保豎向剛度與水平變形平衡。
支座進場檢驗:橡膠支座運至現場后需開箱檢驗,尺寸偏差需符合標準:總高度為設計值的 ±2%,外直徑或邊長為設計值的 ±1% 且不大于 ±5mm;外觀質量需無裂縫、氣泡、缺膠等缺陷,同時核查產品合格證書、出廠檢驗報告及型式檢驗報告。
結構臨時支撐:需采用液壓千斤頂(承載力≥1.2 倍上部結構荷載)對稱布設,避免局部承壓超限;空間條件:支座周邊需預留≥1.5m 操作空間,確保千斤頂升降與支座拆裝;參數匹配:新舊支座的豎向剛度、水平阻尼比偏差需≤10%,避免改變結構受力特性;施工時序:單跨內按 “先中間后兩側” 更換,每更換 1 個支座需靜置 24h,監測結構沉降(≤2mm)后方可繼續。
盆式橡膠支座安裝精度要求:梁體就位后,應在其底板與墩、臺支承墊石之間預留指定空隙,以便采用重力灌漿法灌注高強度無收縮材料,確保密實度。支座中心線需與主梁中心線重合或平行,最大允許偏差需嚴格控制在設計范圍內。對于單向活動支座,安裝時必須確保上下導向塊保持平行,其交叉角嚴格限制在一定分值內(如文中提到的特定要求)。
建筑橡膠支座由多層天然橡膠與至少兩層以上相同厚度的薄鋼板鑲嵌、粘合、硫化而成.通過了解他的做工特點我們能知道橡膠,鋼板及硫化工藝會影響建筑橡膠支座的質量;從這三方面我們來了解那些因素影響建筑橡膠支座的質量問題:看橡膠原料:我們在采購建筑支座時要注意觀察支座的橡膠表面色澤及亮度.好的橡膠會比較油量黝黑建筑支座內部的鋼板是伸縮縫承載力的保證.所以鋼板厚度要有嚴格要求標準,通常建筑支座廠家都會對鋼板進行除銹噴砂工藝處理從而保證橡膠與鋼板的粘接建筑支座制作工藝通常為硫化.因此在硫化時間和溫度控制十分重要.不同規格規格的建筑支座要求硫化時間不同在采購建筑橡膠支座時選購與自己設計紙相配套產品,這樣更能幫助我們選購到性價比高的支座產品.圓形球冠板式橡膠支座的是在板式橡膠支座的頂部用橡膠制造成球形表面,球冠中心橡膠厚為4-8MM,它除了公路建筑板式橡膠支座所具有的所有功能外,通過球冠調節受力狀況,適用于有縱橫坡度的立交橋及高架橋,以適應2%到4%縱橫坡下,其雙林梁與支座接觸面的中心趨于圓形板式橡膠支座的中心。
24小時咨詢熱線:
13323182312
QQ在線咨詢:
839308866
微信號:
13323182312